c, 13 COAN COPY: RETURN TO AFWL (WLIL-2) KIRTLAND AFB, N MEX # RESEARCH MEMORANDUM TESTS OF AERODYNAMICALLY HEATED MULTIWEB WING STRUCTURES IN A FREE JET AT MACH NUMBER 2 TWO ALUMINUM-ALLOY MODELS OF 20-INCH CHORD WITH 0.064 - AND 0.081 - INCH-THICK SKIN By George E. Griffith, Georgene H. Miltonberger, and Richard Rosecrans > Langley Aeronautical Laboratory Langley Field, Va. #### CLASSIFIED DOCUMENT This material contains information affecting the National Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 783 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law. # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS DOWNGRADED AT 3 YEAR INTERVALS: WASHINGTON DECLASSIFIED AFTER 12 YEARS DOD DIR 5200.10 9516 NACA RM L55F13 ## CONFIDENTIAL NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### RESEARCH MEMORANDUM TESTS OF AERODYNAMICALLY HEATED MULTIWEB WING STRUCTURES IN A FREE JET AT MACH NUMBER 2 TWO ALUMINUM-ALLOY MODELS OF 20-INCH CHORD WITH 0.064- AND 0.081-INCH-THICK SKIN By George E. Griffith, Georgene H. Miltonberger, and Richard Rosecrans #### SUMMARY Two 2024-T3 aluminum-alloy multiweb wing structures (MW-2 and MW-3), representative of airplane or missile wings, were tested at a Mach number of 2 under simulated supersonic flight conditions, and temperatures and strains were measured. The first model failed dynamically toward the end of its test because of the combined action of aerodynamic heating and loading. The second model, with thicker skin, survived tests up to an angle of attack of 3.5° but failed statically at an angle of attack of 5°. The model skin temperatures were in fair agreement with calculated values, but the stresses generally did not agree with expected results, possibly because of difficulty in converting the strain-gage data. # INTRODUCTION As part of a program investigating the effects of aerodynamic heating on aircraft structures, the Structures Research Division of the Langley Laboratory is testing multiweb wing models under aerodynamic conditions similar to those encountered in supersonic flight at a Mach number of 2. The first structure MW-1, a multiweb wing of 40-inch chord and span, was tested primarily to obtain data on the temperature distribution, but the aerodynamic loads played an unanticipated role in that the model experienced a dynamic failure near the end of the test. Details of the test results and failure of model MW-1 are presented in reference 1, and the preliminary experimental results for the first seven models in the test program are given in reference 2. The second model MW-2, of 20-inch chord and span, was essentially a half-scale version of model MW-1 and was tested to compare its behavior with that of its prototype and to obtain additional information through increased instrumentation. This model also experienced a dynamic failure near the end of its test. The third model MW-3 was similar in size to model MW-2 but was provided with a thicker skin in order to withstand greater stresses, due to both loading and heating; this model failed statically at an angle of attack of 5° after surviving four tests at smaller angles of attack. The present paper discusses in detail the test results of models MW-2 and MW-3. # SYMBOLS | c | specific heat, Btu/(lb)(°F) | |---------------------------|---| | h | heat-transfer coefficient, Btu/(sq ft)(sec)(OF) | | H | stagnation pressure, lb/sq in. abs | | t | time from start of air flow, sec | | ^t 0 | time of initial conditions in temperature calculations, sec | | T | model temperature, ^O F | | T _{AW} | adiabatic wall temperature, ^O F | | \mathbf{T}_{O} | initial model temperature, ^O F | | $\mathtt{T}_{\mathtt{S}}$ | stagnation temperature, ^O F | | w | specific weight, lb/cu ft | | α , | angle of attack, deg | | τ | skin thickness, ft | #### TESTS ### Models The models designated MW-2 and MW-3 were identical in construction except for skin thickness; they comprised somewhat idealized semispan cantilever multiweb wings with 5-percent-thick, symmetrical, circular-arc airfoil sections (fig. 1). Model MW-2 had 0.064-inch-thick skin and model MW-3 0.081-inch-thick skin. All material was 2024-T3 (24S-T3) aluminum alloy except that the rivets were either 2117-T (A17S-T) aluminum alloy or Huck rivets and steel screws were used to attach the skins to the upper bulkhead. The surfaces of the models were sanded to provide a finish of approximately 15 microinches, root mean square, and were unpainted. Pertinent dimensions and details of construction of the models are given in figure 1. During a test a flat plate or fence surrounded the model approximately $19\frac{7}{8}$ inches below the model tip so that the fence projected 1/8 inch above the lower jet boundary and concealed the doubler plates, lower bulkhead, and supporting structure from the airstream. # Instrumentation Each model was instrumented with 24 iron-constantan thermocouples, 4 pressure orifices, and 24 Baldwin SR-4 type AB-11 wire strain gages. (See fig. 2.) Locations were identical except that the strain gages attached to model MW-2 at the station 11 inches from the model tip were alined in the chordwise direction, whereas the gages at these locations on model MW-3 were alined in the spanwise direction, and, in addition, the forward pressure orifices for model MW-3 were located 3½ inches from the leading edge. Some instrumentation was inoperative at test time. (For details concerning the installation and accuracy of the instrumentation see the appendix.) Supplementary data were supplied through three 16-millimeter motion-picture cameras which operated at from about 75 to 230 frames per second. #### Description of Tests The tests were made at the Langley Pilotless Aircraft Research Station, Wallops Island, Va., in the preflight jet, a blowdown wind tunnel in which models are tested in a free jet at the exit of a supersonic nozzle. (See the appendix for additional details.) Six test runs were made on the two models at a Mach number of 1.99 and at a stagnation pressure of approximately 120 lb/sq in. abs. All were hot runs, $T_S \ge 432^{\circ}$ F, except for one cold run, $T_S = 98^{\circ}$ F, made on model MW-3. For all test runs the stagnation pressure was attained in 2 seconds or less after air began to flow from the nozzle and then fluctuated about the desired value until about 9 seconds (two tests) or 11 seconds (three tests), with the exception that for run 5 on model MW-3 the 4 control valve was closed soon after the model had failed. Test time is reckoned from the time air began to flow out of the nozzle, and test conditions are considered to exist whenever the stagnation pressure exceeds 100 lb/sq in. abs. The stagnation temperatures approached test values almost immediately after the opening of the jet control valve. Detailed test conditions are given in table I and are discussed more fully under the section entitled "Test Facility" (see the appendix). Model MW-2.- Model MW-2 was mounted vertically in the jet (root-downward) at an angle of attack of 0.2° with its leading edge 2 inches downstream of the nozzle-exit plane (figs. 2 and 3). The model extended 20 inches into the airstream so that both the top of the doubler plates and the top of the fence (figs. 1 and 2) were about 1/8 inch above the lower jet boundary. After surviving the initial disturbance of the jet (see the appendix) the model remained steady until approximately 10 seconds at which time a vibratory motion took place; test conditions ended shortly thereafter (10.8 seconds) and during the shutdown phase of the jet the model experienced a partial failure. Model MW-3.- Model MW-3 was located similarly to model MW-2 except that, as the tests progressed, the model was rotated in a counterclockwise fashion (looking at the top of the model) about a point $1\frac{1}{2}$ inches downstream of the trailing edge at successive angles of attack of -0.1°, -0.1°, 1.8°, 3.5°, and 5.0°. The first test was a cold run $(T_S = 98^{\circ} \text{ F})$; the four remaining tests were hot runs. (For pertinent aerodynamic data, see table I.) Except for the temporary vibrations due to the starting and stopping phases of the jet, the model remained steady and survived runs 1 to 4 without sign of difficulty. At an angle of attack of 5° the model failed statically in bending at the root section just as test conditions were reached. The two tests during which the models failed are described more fully in the section entitled "Model Failures." #### RESULTS AND DISCUSSION # Experimentally Determined Test Conditions Stagnation pressure. Variations of the stagnation pressures with time for all test runs are given in figure 4. Fluctuations of these pressures during the tests indicate that test conditions (assumed to exist whenever $H \ge 100$ lb/sq in. abs.) were almost but never fully stabilized. The values reported in table I are average stagnation pressures during test conditions, except that for run 5 on model MW-3 the stagnation pressure is that obtained at the time of failure. Stagnation temperature. The stagnation temperature was obtained by averaging during the time of test conditions the average temperature of the two probes located just aft of the models (fig. 3). (This method is somewhat different from that used to obtain the stagnation temperature for the test on model MW-1; a short discussion of the reasons for so doing appears in the appendix.) Variations of the average probe temperature with time are given in figure 5. In these plots the apparent delay of approximately 0.7 second in reaching test conditions is due to time lag (see the section "Accuracy" in the appendix). The peak values shown in the plots at approximately 1 second are believed due to the stagnant mass of air in the heat accumulator; this air is somewhat hotter than that which follows it out of
the jet when the control valve is opened. Angle of attack. The angle of attack for a given test was determined by using the experimental pressure differences at both pressure stations, slopes found from measured model ordinates, and second-order, small-perturbation theory, with the results at the rearward station being modified for tip effects in accord with the method of reference 3. Slightly different angles of attack were obtained at the two pressure stations. The values given in table I are the mean values for the two stations of the arithmetic test-run averages obtained during the time test conditions existed, except that for run 5 on model MW-3 the conditions used were those at the time of failure. # Model Temperatures Model MW-2.- Only 14 of the 25 thermocouples attached to model MW-2 were in working order during the one test run on the model; temperatures were recorded for the five center skin panels and the first three webs and are given in table II in increments of 1 second until readings became erratic. As expected, the skin temperatures decreased slightly across the model chordwise, from front to rear. A spanwise decrease, from tip to root, was also indicated in that the temperatures recorded by thermocouples 5 and 6 were somewhat lower than other skin temperatures near the same chordwise station. The lower temperatures of thermocouples 5 and 6 may be partly.due to some sink effect created by cementing lead wires to the under side of the skin, but are probably due more to the effect of the paraboliclike stagnation-temperature profile (see the appendix). During the test the interior temperatures lagged considerably behind the skin temperatures, but all temperatures were still increasing at a substantial rate at the end of the test; these results indicate that the test was transient in nature and of insufficient length to produce a steady-state temperature condition. Plotted in figure 6 are some experimentally obtained temperatures which illustrate the effects of heat conduction from the skin to the interior of the model. The skin near the web (thermocouple 13) loses heat to the interior and consequently has a somewhat lower temperature than the skin uninfluenced by heat conduction (thermocouples 10 and 11 — the average temperature of these two thermocouples has been plotted, since the individual temperatures differ by only a few degrees). For a point at the midheight of a web (thermocouple 21), heat is first conducted along the skin and then down into the web; hence, there is appreciable lag between the temperature at this point and the adjacent skin temperatures — the same is true for thermocouples 19 and 20 (not shown). Model MW-3.- Nineteen or 20 of the 25 attached thermocouples were in working order for all test runs on model MW-3 and temperatures for these thermocouples for runs 2, 3, and 4 are given in table III. Run 1 was a cold test during which the model experienced measured increases in temperature ranging from 5° to 19° F, with the temperatures decreasing from leading to trailing edge and from tip to root, as for model MW-2. The highest temperature recorded was that for thermocouple 24 located in the solid leading-edge section. For test runs 2, 3, and 4 (hot runs at angles of attack of -0.1°, 1.8°, and 3.5°) sample skin and web temperatures are shown in figure 6. The increase in skin thickness (from 0.064 inch for model MW-2 to 0.081 inch for model MW-3) should result in lower skin temperatures (for the same stagnation temperature), but in more heat being conducted into the interior than for model MW-2; hence the temperature differences between skin and web were not so great as for model MW-2 with its thinner skin. As was expected, for runs 3 and 4 (angles of attack of 1.8° and 3.5°) thermocouple 10 on the under side of the model experienced a faster temperature rise than thermocouple 11 (on the upper side). Again, the plots illustrate that steady-state conditions were not reached in the tests. The fifth test run on model MW-3 (angle of attack of 5.0°) resulted in failure of the model just as test conditions were reached, and hence no temperature data are tabulated for this test; the measured temperatures had increased by approximately 20° to 70° F by the time of failure. Skin temperatures (calculation A).— Comparisons between calculated and experimental skin temperatures are shown in figure 7 for only the skin locations corresponding to thermocouples 10 and 11. In the calculations the effects of conduction, radiation, and temperature variation through the skin thickness were considered negligible. The equation giving the temperatures is $$T = T_{AW} - (T_{AW} - T_{O})e^{-\frac{h(t-t_{O})}{cWT}}$$ where T_0 is the initial temperature and t_0 is an initial time adjusted to allow for the variation in test conditions during the starting phase of the jet. Local flow conditions were used in the turbulent-flow formulas given in reference 4 to obtain the heat-transfer coefficient h and the adiabatic wall temperature $T_{\Delta W}$. Fairly good agreement between the calculated and test temperatures is evidenced in figure 7 for the tests on model MW-2 and model MW-3 run 2. In these plots the test values are the averages of thermocouples 10 and 11. For model MW-3 runs 3 and 4 (fig. 7), wherein the model was subjected to angles of attack of $1.8^{\rm O}$ and $3.5^{\rm O}$, the agreement is not very good, particularly so for the latter test. The differences in the temperatures of the two skins are about the same as the differences obtained from the calculations, but the magnitudes of the temperatures show poor agreement. This poor agreement could be due in part to some error in the test stagnation temperatures used in establishing h and $T_{\rm AW}$, or possibly to some effect of angle of attack not considered in calculating h and $T_{\rm AW}$, or to some error in the measured temperatures due to weakening of the bond between the thermocouple and the metal brought about by vibrations associated with repeated testing. The results shown in figure 7 are representative of the overall agreement between calculated and test temperatures for all skin locations uninfluenced by heat conduction to other parts of the models. Temperature distributions (calculation B).- Temperature histories for the complete chordwise cross sections of the models, corresponding to the test on model MW-2 and to test run 2 on model MW-3, were calculated by using a numerical procedure similar to that of reference 5. The model cross sections were each divided into eight segments of two types, one for the leading or trailing edge (plus adjacent skin) and the other for any skin and web combination (see, for example, ref. 6). The dividing lines between segments were chosen such that at these points heat conduction along the skin could be considered negligible. The segments for the solid leading or trailing edges and attached skin were then subdivided into 11 elements and any skin and web combination into 12 elements, as shown in figure 8. Values of the heat-transfer coefficient and adiabatic wall temperature obtained using local flow conditions and the turbulent-flow formulas of reference 4 were used in the calculations. No attempt was made to evaluate joint effects. The results, in the form of chordwise temperature distributions at both 3 and 8 seconds for the skin temperatures and the temperatures at the center line of the solid leading and trailing edges and of the webs, are presented in figures 9 and 10 with the corresponding experimental values. In addition, a few calculated temperature histories are compared with test values in figure 11. Figures 9 and 10 show that the overall agreement between calculated and experimental values is fairly good for the skin temperatures of model MW-2 and both the skin and interior temperatures for run 2 on model MW-3. However, the calculations considerably overestimate the web temperatures for model MW-2. Part of this discrepancy may be due to resistance to the conduction of heat across the joint between skin and web not accounted for in the calculations. Comparison of a few calculated and experimental temperature histories given in figure 11 again illustrates that the agreement is generally fair except that the values for the web temperatures of model MW-2 are in poor agreement. # Strain-Gage Results The models were instrumented with Baldwin SR-4 type AB-11 wire strain gages (see the section "Model Instrumentation" in the appendix) in order to obtain data on the distribution and magnitude of the stresses, both static and dynamic, and the frequency of any vibratory stresses. These gages were considered adequate for depicting vibrations, but since the gages were used under conditions for which they were not intended, the results in regard to stresses cannot be considered reliable and consequently are not plotted or tabulated. It is believed that the gages yielded reliable information concerning the frequency and phasing of any vibratory stresses. All frequencies reported were obtained from the strain-gage records. Although the amplitudes of any vibratory stresses were damped considerably beyond 60 cycles per second (at 220 cycles per second the relative amplitude was about 0.2 true amplitude), the relative amplitudes, together with the phasing and frequencies, were helpful in reconstructing model behavior and in substantiating events seen in the motion pictures. The tests subjected the models to two sources of stress, aerodynamic loading and aerodynamic heating, but by far the greater portion of stress at most strain-gage locations could be expected to be caused by aerodynamic heating. Such heating results in nonuniform temperature distributions across the chord (see, for example, figs. 9 and 10) and in the spanwise direction (see the preceding section "Model Temperatures"). These nonuniform temperature distributions produce uneven thermal expansion and therefore thermal stresses,
principally compression in the skin in both the spanwise and chordwise directions. The test results indicate that substantial stresses apparently developed during all tests wherein the models were subjected to aerodynamic heating, but that very small stresses (less than 2 ksi in all but one case) resulted during the cold run (run 1 on model MW-3) when the temperatures changed insignificantly (19° F or less). Some approximate stress calculations, using the experimental temperature differences, indicate that the chordwise stress for model MW-2 was of the same order of magnitude as the critical buckling stress. Although no stress analysis is presented herein for either model, reference 7 presents several methods, incorporating various degrees of approximation, for finding stresses and stress distributions resulting from thermal differences. The preliminary results of reference 2, concerning the test on model MW-2 and the results for the chordwise skin strain gages across the chord ll inches from the tip, were in substantial agreement with the expected results expressed in the preceding paragraph and approximate stress calculations. It was stated in reference 2 that "Approximate calculations and the recorded strains indicated that these two types of stresses were of about the same order of magnitude, around 6000 psi" (compression). At that time only preliminary calibration data were available, and data obtained between 80° F and 300° F were extrapolated to gage temperatures beyond 300° F where necessary in order to convert the strains to stresses. Later, more extensive calibration data revealed marked differences in gage behavior above 300° F. The results discussed herein were obtained using the later calibration data and show that the results of the test on model MW-2 are in marked disagreement with the statement in reference 2 and with the expected results, in that tensile stresses are almost universally indicated for these chordwise skin strain gages. For model MW-3 the skin strain gages at this chordwise station were alined in the spanwise direction, but, again, the gages were expected to be in compression. Once more the results were somewhat unexpected in that, with very few exceptions, the gages indicated tensile stresses. Although surprising, the results may merely reflect the effects of various inaccuracies upon the data reduction. The gages mounted spanwise on the skin at the chordwise station $16\frac{1}{2}$ inches from the tip show moderately small stresses which increased with increased angle of attack, with the gages on the left skin (looking upstream) being in compression and the gages on the right side being in tension in accord with the aerodynamic forces. The temperatures for the skin gages at this station were somewhat lower than for the skin gages at the station 11 inches from the tip due to the sink effect of the webs and to the lesser stagnation temperature at this spanwise station. Thus the thermal stresses were not so great and the results were less affected by data-reduction inaccuracies (zero shift, etc.). Gages mounted on the webs always indicated tension, as expected, since the webs were cooler than the outer surface and provided restraint against the thermal expansion of the skin. Since these gages underwent the least temperature increases of any model gages, the data reduction was the least affected and the stresses, therefore, are probably the most reliable obtained. Results similar to those discussed in this and the preceding paragraph were found for run 5 on model MW-3 at the time of failure. #### Model Failures Model MW-2.- After experiencing some random vibrations due to the characteristic initial disturbance of the jet (see the appendix), model MW-2 remained steady until 9.8 seconds. At this time, as indicated by the motion pictures taken by cameras placed above the model and by the frequency, phasing, and amplitudes of the skin strain gages across the chord 11 inches from the tip, the model began to flutter at 226 cycles per second in a mode with about $1\frac{1}{2}$ waves along the chord and with the maximum amplitude near the trailing edge - a flag-waving action involving chordwise bending of the airfoil section that has been called chordwise flutter (refs. 2 and 8). Motion pictures taken from opposite sides of the model indicated that at approximately the same time, 10.0 seconds, a buckle had developed in the rearmost panel of both skins. At 10.8 seconds the stagnation pressure dropped below 100 lb/sq in. abs and test conditions were considered as having ended at this time. Shortly thereafter, at 11.5 seconds, and with the model still fluttering, the motion pictures showed the initial signs of failure to be a fracture of the tip rib and tearing of the adjacent skins just forward of the trailing edge. The piece of the tip rib tore away and was followed by tearing away of pieces of skin and the top part of the solid trailing-edge member. This was followed by further tearing of both skins in the next-to-last bay from the top of the model to about midsemispan, tearing away of an additional piece of skin and the trailing-edge member, and finally by the departure of the upper half of the next-to-last web. This last action occurred at 13.5 seconds by which time the entire upper rear corner had torn away. From about 13.5 to 14.2 seconds the model experienced additional disturbances associated with the shutdown characteristics of the jet. The failing action just described is illustrated in figure 12 by six frames taken from the motion pictures, and the model after the test is shown in figure 13. If the jet had continued to run the model undoubtedly would have been completely destroyed as was model MW-1 (ref. 1). The primary cause of failure was the aerodynamic heating since the model survived the starting disturbances without damage and then remained steady until the induced thermal stresses reduced the effective stiffness of the model (ref. 9) and caused it to flutter. At approximately the same time that the model began to vibrate, chordwise buckling of the skin developed in the rearmost bay; however, the exact order of flutter and skin buckling cannot be stated with certainty. The flutter could have been caused directly by thermal stresses which were insufficient to produce buckling but which were nevertheless sufficient to reduce the effective stiffness of the model to a point where flutter occurred, or the thermal stresses could have caused skin buckling (also a reduction in stiffness) which triggered off the model flutter. In either event the primary cause of failure was the aerodynamic heating. The flutter that occurred (at 226 cycles per second) had about $1\frac{1}{2}$ waves along the chord with the maximum amplitudes at the trailing edge, a flag-waving action involving chordwise bending of the airfoil section and referred to as chordwise flutter; the distortions were somewhat similar to those shown in figure 6 of reference 2. (This type of flutter apparently has been little observed but is discussed to some extent in ref. 8.) Shortly after the model began to flutter, a fatigue failure of the tip bulkhead occurred in the form of tearing across the bulkhead at a section weakened by rivet holes. The adjacent skins (both sides) began to tear and the destruction continued as previously described. Since test conditions ended at 10.8 seconds and the bulkhead failure occurred at 11.5 seconds, all visible destruction actually took place during a period of decreasing stagnation pressure; had the jet continued to run, the model undoubtedly would have been completely destroyed. Motion pictures of the tests of models MW-2 and MW-3 can be obtained on loan from NACA Headquarters, Washington, D. C. (film entitled "Supersonic Jet Tests of Simplified Wing Structures"). Although the preliminary results of reference 2 indicated that the flutter of model MW-2 was induced by thermal buckling of the skin, the more extensive study of the motion pictures and the strain-gage records reported herein reveals that it is impossible to state positively the order in which these events occurred. The skin buckle in the rearmost bays (each side) developed gradually (and may also have been developing to a lesser extent in other bays), so that it is impossible to assign an exact time of buckling; hence, the time given (10.0 seconds) is that when an obvious buckle had developed. The wire strain-gage records reveal more definitely that at 9.8 seconds, approximately the time of skin buckling, the model began to flutter as already described. Flutter associated with the aerodynamic heating of the models and the resulting thermal stresses is felt to be a function of the reduced stiffness of the structure brought about by a state of thermal stress which is dependent upon the nonuniformity of the temperature distribution but which is essentially independent of material property changes that are functions of the temperature level. (See, for example, ref. 9.) The only pertinent material property change that is expected to occur in the test time is in the modulus of elasticity, which would amount to a maximum reduction of about 10 percent. No known accurate criterion exists at present which will predict when and how structures such as these models will flutter. The failures of model MW-2 and its larger scale original model MW-1 were fundamentally similar in that flutter, either accompanied by or closely preceded or followed by skin buckling, resulted in failure in the vicinity of the trailing edge. The primary cause of failure in both tests was aerodynamic heating. The thinner skin of model MW-2 caused its skin to become hotter faster than the skin of model MW-1, and the hotter skin and smaller webs of model MW-2 also resulted in higher interior temperatures. Except for the tip bulkhead of model MW-2, which was within the airstream and underwent some temperature rise, the bulkheads of both models experienced negligible
temperature changes. For both models the induced thermal stresses were insufficient to produce spanwise skin buckling but were, according to approximate calculations, sufficient to cause skin buckling in the chordwise direction. In the test of model MW-1, a vibratory motion began at 7.5 seconds accompanied by skin buckles which apparently originated in the skin panels near the leading edge; these buckles, appearing and disappearing rapidly, moved toward the trailing edge and settled there, whereas for model MW-2 the only appreciable buckles occurred at 10.0 seconds in the rearmost panels (both sides) although the motion pictures indicated that perhaps smaller buckles might have been forming in other panels; in each case the buckling in a panel was a long, narrow chordwise skin buckle. Both models apparently experienced some kind of flutter, but whereas the flutter of model MW-2 has been described with some certainty, the fluttering action of model MW-1 cannot. In both cases, the most violent action occurred near the trailing edge and destruction began in this region. It is felt that the destruction of model MW-2 would have been as violent and complete as that of its predecessor had the air flow lasted only slightly longer. Model MW-3. Beginning at 0.2 second after the air began to flow through the jet, model MW-3 (at an angle of attack of 5°) vibrated, mainly in bending, at approximately 65 cycles per second until the initial normal shock reached the leading edge of the model. At this time, 1.0 second, the model steadied. The normal shock wave had moved to the model midchord at 1.2 seconds, then moved downstream and disappeared. The model continued to remain steady until 1.8 seconds, at which time test conditions had been reached and the aerodynamic forces had become sufficiently large to produce compressive buckling of the skin at the root section. At this time the model collapsed on its side to the position shown in figure 14. The failure was almost entirely independent of any aerodynamicheating effects, since the maximum measured temperature rise (70° F) was insufficient to produce any noticeable changes in the properties of the material and the temperature differences in the structure (approximately 35° F near the middle of the model) were so small that only negligible thermal stresses had developed. Thus the failure was almost solely due to aerodynamic loading. At the time of failure the aerodynamic forces had increased to slightly beyond the prescribed value (H = 106 lb/sq in. abs), and the calculated force of about 6.7 lb/sq in. (970 lb/sq ft) was sufficient to cause the skin to wrinkle completely across the chord and to crush the webs on the compression side of the model. As soon as the skin wrinkled the aerodynamic forces pushed the model completely over on its side. #### CONCLUDING REMARKS Six tests on two multiweb wing models were made under simulated aerodynamic conditions, and temperatures and strains were measured, with the following results: For the five tests wherein the models experienced aerodynamic heating, the surface temperatures always exceeded the interior (web) temperatures. Skin temperatures were hottest near the leading edge and progressively cooler toward the trailing edge with corresponding dips near the heat sinks created by the webs. The highest recorded temperatures were those in the solid leading-edge member. For points in the skin midway between webs, the measured temperatures showed only fair agreement with calculated temperatures wherein heat conduction was considered negligible (calculation A), the agreement being progressively worse as the angle of attack increased. Detailed calculations of the complete chordwise cross-sectional temperature distributions for models MW-2 and MW-3 run 2 (calculation B) showed generally fair agreement with the experimental temperatures except that the interior temperatures for model MW-2 were considerably overestimated. Much of the stress data disagrees with expected results, but so much uncertainty encompasses the reduction of the strain data that no conclusions can be made concerning the results. The strain data were useful, however, in providing phasing and frequency information and in helping to reconstruct model behavior. Model MW-2 experienced a partial dynamic failure late in its test (just after the stagnation pressure began to diminish), apparently brought on by aerodynamic heating which caused a reduction in stiffness of the model, skin buckling, and flutter. The model would undoubtedly have been completely destroyed had the flow of air continued a short time longer. The first test on model MW-3, a cold run, indicated that for the remaining tests, except for run 5 wherein the model failed, at least a substantial portion of most stresses obtained from the measured strains was the result of aerodynamic heating. The thicker skin of model MW-3 prevented the occurrence of flutter even when the model was tested at angles of attack of 1.8° and 3.5°. At an angle of attack of 5.0° the aerodynamic forces were sufficient to cause the compressive skin to wrinkle and the model to fail statically. Langley Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., May 23, 1955. #### APPENDIX # APPARATUS, INSTRUMENTATION, AND ACCURACY # Test Facility The preflight jet is a blowdown wind tunnel in which models are tested in a free jet at the exit of a supersonic nozzle. When a pressure control valve is opened, dry air escapes from two storage spheres and passes through a heat accumulator that can be preheated to provide stagnation temperatures up to 600° F. The control valve regulates the flow of air and maintains a free-stream pressure of about 1 atmosphere at the nozzle exit. For the Mach number 2, 27- by 27-inch nozzle used in these tests, stabilized aerodynamic conditions can be maintained at the exit of the nozzle for approximately 9 seconds after a starting period of 2 seconds. Three additional seconds are required to shut down the jet, so that the total test time is about 14 seconds. Starting and shutdown characteristics of the jet .- At the beginning and end of a test, there occurs a twofold disturbance which is a characteristic of the test facility but independent of any aerodynamic heating. This disturbance, which temporarily affects the model, takes place whenever the stagnation pressure exceeds 16 lb/sq in. abs but is less than 105 lb/sq in. abs. When a test begins the first stage of this twofold disturbance occurs when the stagnation pressure is less than 50 lb/sq in. abs. During this time the normal shock is inside the nozzle, the flow over the model is subsonic and very turbulent, and the model undergoes severe random vibrations - mostly in bending but with some torsion. The second stage of the disturbance begins when the stagnation pressure reaches 50 lb/sq in. abs. At this time the flow over the leading edge of the model becomes supersonic, the violent model vibrations stop, and a complicated shock pattern develops over the model. This shock pattern, which originates at the nozzle, reduces to oblique shocks of negligible strength when the stagnation pressure reaches 105 lb/sq in. abs. During this second stage the pressure variations appear to have little effect on the model other than to tend to produce local skin deformation or bending. At the close of a test these stages occur in reverse order. Stagnation temperature.— The test of model MW-1 (ref. 1) revealed some difficulty in determining an accurate test stagnation temperature; for lack of a better method, the stagnation temperature for the test on model MW-1 was taken as the arithmetic average of temperatures from nine thermocouples mounted on a rake downstream of the heat accumulator, with the spread in individual values exceeding 100° F. For succeeding tests the rake temperatures were again recorded, but, in addition, two stagnation-temperature probes were mounted just aft of the model, where the temperature distribution was expected to be more uniform, and at the approximate height of the main model thermocouple installation (10 inches from the tip). Shortly after the tests on models MW-2 and MW-3, limited surveys were taken at the nozzle exit in order to determine the stagnation-temperature distribution across the vertical center line of the jet just downstream of the nozzle exit. For the tests on models MW-2 and MW-3 the stagnation temperatures, measured by either eight or nine thermocouples in the rake downstream of the heat accumulator, varied by 110° F for the cold run (run 1 on model MW-3) and by an average of 217° F for the hot runs (all remaining tests except run 5 on model MW-3). The two stagnation-temperature probes, located 23.5 inches from the nozzle exit and approximately at midheight of the models, varied by 9° F for the cold run and an average of 28° F for four hot runs (only one probe was in operation during run 2 on model MW-3). In all cases the individual temperatures were nearly constant with time. However, the average temperature of the rake thermocouples was not in very good agreement with the average of the probe thermocouples; the disagreement varied from 25° F to 56° F (not including run 5 on model MW-3). The survey tests showed that the stagnation-temperature profile across a vertical center line at the nozzle exit is roughly parabolic and that the maximum temperature near the center exceeds the temperature at the edges by approximately 100° F. During these tests a few temperatures were measured at the approximate height of the probe thermocouples and then compared with the probe temperatures; in each case the agreement was fairly good. From the foregoing discussion it is evident that some uncertainty accompanies the determination of an accurate test stagnation temperature. However, since the probes were located in the stream near the models and at the approximate height of most of the model
instrumentation, an average of the probe temperatures was considered the most accurate indication of the test conditions. These temperatures, averaged during test times, are listed in table I. Plots of these stagnation temperatures are also given in figure 5. # Model Instrumentation Thermocouples. Thermocouples were peened into small holes drilled into the skin and webs; the skin thermocouples were located at the midplane of the skin. In the leading- and trailing-edge sections, the thermocouples were covered with cement and then inserted in small holes drilled into these solid sections. <u>Pressures.-</u> The model pressure-pickup installation, used only to determine the angle of attack, consisted of 0.059-inch-inside-diameter copper tubing, approximately 18 inches in length, leading from an 0.059-inch-diameter orifice in the skin to a Statham pressure transducer outside the model. Tubing from both skins was connected to pressure transducers in such a manner that both pressure for the left side, looking upstream, and differential pressure (right side) were obtained at the two chordwise pressure stations shown in figure 2. Strain gages. - Baldwin SR-4 type AB-11 wire strain gages were attached to the models (at the locations shown in fig. 2) in accordance with the manufacturer's specifications and cured to 250° F. The gages were then cycled twice to 300° F by inserting the models in an oven and gradually increasing the temperature from 80° F to 300° F in 2 hours, with the temperature being maintained at 300° F for approximately 12 minutes, allowing the models to cool, and repeating the process. During the second cycle the zero shifts of the individual gages were measured. Although model temperatures in excess of 300° F were anticipated, the curing temperatures were not allowed to exceed 300° F in order to minimize changes in the mechanical and physical properties of the 2024-T3 material. Since these strain gages are non-temperature-compensating, calibration data were obtained for sample gages cured in the same manner, but the calibration data were necessarily obtained under steady-state conditions. The calibration tests indicated that a marked difference in zero shift takes place beyond 300° F (for gages which have never previously exceeded this temperature). Moreover, this zero shift can be of the order of magnitude of the indicated strain, varies from gage to gage, and is dependent upon the gage temperature, which may not be accurately known. In addition to the aforementioned factors there are others which adversely affect the interpretation of the strain-gage results. #### Accuracy Listed below are the estimated probable errors in individual measurements and also the corresponding time constants. The time constant, which is considered independent of the probable error, is defined as the time at which the recorded value for a step-function input is 63 percent of the input; at three time constants the response amounts to 95 percent of the input. | Item | Probable error | Time constant | |--|--|--| | Stagnation pressure Stagnation temperature Model temperature Model pressure Model strain | ±0.7 lb/sq in. ±3° F ±3° F ±0.1 lb/sq in. ±80 μin./in. | 0.03 sec
.12 sec
.03 sec
.03 sec
.02 sec | Errors due to the thermocouple installation have not been included above, but they are probably small. The maximum temperature difference through the skin thickness was estimated to be less than $5^{\rm O}$ F, so that thermocouples in the skin should measure the average skin temperature within $2^{\rm O}$ F. Calibration tests showed the Mach number to be 1.99 ± 0.02. #### REFERENCES - 1. Heldenfels, Richard R., Rosecrans, Richard, and Griffith, George E.: Test of an Aerodynamically Heated Multiweb Wing Structure (MW-1) in a Free Jet at Mach Number 2. NACA RM 153E27, 1953. - 2. Heldenfels, Richard R., and Rosecrans, Richard: Preliminary Results of Supersonic-Jet Tests of Simplified Wing Structures. NACA RM 153E26a, 1953. - 3. Czarnecki, K. R., and Mueller, James N.: An Approximate Method of Calculating Pressures in the Tip Region of a Rectangular Wing of Circular-Arc Section at Supersonic Speeds. NACA TN 2211, 1950. - 4. Chauvin, Leo T., and DeMoraes, Carlos A.: Correlation of Supersonic Convective Heat-Transfer Coefficients From Measurements of the Skin Temperature of a Parabolic Body of Revolution (NACA RM-10). NACA RM 151A18, 1951. - 5. Kaye, Joseph: The Transient Temperature Distribution in a Wing Flying at Supersonic Speeds. Jour. Aero. Sci., vol. 17, no. 12, Dec. 1950, pp. 787-807, 816. - 6. Griffith, George E.: Transient Temperature Distribution in an Aerodynamically Heated Multiweb Wing. NACA RM 153E27a, 1953. - 7. Heldenfels, Richard R.: The Effect of Nonuniform Temperature Distributions on the Stresses and Distortions of Stiffened-Shell Structures. NACA TN 2240, 1950. - 8. Halfman, Robert L., and Ashley, Holt: Aeroelastic Properties of Slender Wings. Proc. First Nat. Cong. Appl. Mech. (Chicago, Ill., 1951), A.S.M.E., 1952, pp. 907-916. - 9. Vosteen, Louis F., and Fuller, Kenneth E.: Behavior of a Cantilever Plate Under Rapid-Heating Conditions. NACA RM L55E2Oc, 1955. TABLE I .- AERODYNAMIC TEST DATA | | Тев | t | Angle of | Kach | Stagnation pressure, | Stagnation
temperature, | Free-stream | Free-stream
dynamic | Free-stream
temperature, | Free-stream | Free-stream
density, | Speed of sound, | Reynolds
number | |---|--------|-----|----------|------|----------------------|----------------------------|------------------------|------------------------|-----------------------------|------------------------|-------------------------|------------------------|------------------------| | | Model. | Run | deg | | | pressure,
lb/sq in. abs | pressure,
lb/sq in. | o _F | fps | slugs/ou ft | fps | per foot | | | | NW-2 | ı | 0.2 | 1.99 | 3178 | 432 | 15.2 | 42.3 | 38 | 2.18 x 10 ³ | 2.57 × 10 ⁻³ | 1.10 × 10 ⁵ | 15.4 x 10 ⁶ | | | им-3 | 1 | 1 | 1.99 | 113 | 98 | 14.6 | 40.5 | -149 | 1.72 | 3.94 | .86 | 27.9 | | } | | 2 | 1 | 1.99 | 120 | 451 | 15.5 | 45.0 | 48 | 2.20 | 2,56 | 1.10 | 15.3 | | 1 | | 3 | 1.8 | 1.99 | 121 | 466 | 15.7 | 43. 5 | 57 | 2.22 | 2.54 | 1.12 | 15.1 | | l | | 4 | 5.5 | 1.99 | 119 | 475 | 15.4 | 42.7 | 62 | 2.23 | 2.47 | 1.12 | 14.6 | | | | 5 | 5.0 | 1.99 | 106 | 480 | 15.8 | 38.3 | 65 | 2.24 | 2.20 | 1.12 | 13.0 | PARIE II.- TEMPERATURES FOR MODEL MW-2 | t,
Nea | Temperature, ^O T, at thermocouple | | | | | | | | | | | | | | | |----------------------------|--|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|-------------------------------------|---------------------------------|---------------------------------------|--| | | 5 | 6 | 9 | 10 | 'n | 13 | 14 | 15 | 16 | 17 | 19 | 20 | 21. | 222 | | | 0
1
2
3
4
5 | 87
118
164
209
245
275 | 88
116
166
213
247
273 | 88
132
179
231
274
307 | 89
124
177
226
266
297 | 89
127
181
253
273
305 | 90
122
165
209
246
278 | 91
126
172
217
252
283 | 87
119
171
219
257
288 | 88
117
167
211
246
277 | 87
118
164
203
235
262 | 89
92
107
142
183
223 | 89
95
96
108
130
155 | 89
88
92
118
137 | 88
100
129
171
208
241 | | | 6
7
8
9
10 | 294
312
325
336 | 295
311
324
334
338 | 333
355
371
384
403 | 321.
340
356
367 | 329
348
363
374
387 | 302
322
339
351
353 | 307
327
34
355 | 312
531
347
359
378 | 501
521
557
347
362 | 286
305
321
332 | 257
286
309
328 | 179
202
225
240
259 | 154
175
196
215
242 | 269
294
314
330
341 | | TABLE III.- TEMPERATURES FOR MODEL MW-3 | 7 | t, | | | | | -, | | l'empe | erati | ıre, | °F, | at t | ther | 100001 | ıple | | | | | | | |-----|------------------------|---------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-------------------|---------------------------------------|---------------------------------------|---|-------------------------------------|-------------------------------------|-------------------|--------------------------------------|--------------------------------------| | Run | вес | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 10 | יו | 12 | 13 | 15 | 16 | 18 | 19 | 20 | 21 | 22 | 24 | 25 | | 2 | 012345 | 85
116
169
224
270
305 | 168
227
272 | 86
109
155
204
249
283 | 172
226
269 | 157
205 | 82
114
166
216
255
286 | 80
105
143
183
183
24 | | 86
113
158
204
247
281 | 162
209
252 | 87
112
154
199
239
272 | | 84
111
158
201
240
272 | 84
109
157
190
221
248 | 87
91
110
152
202
249 | 134 | 86
86
93
108
135
164 | 130
169
209 | 85 % 14 75 75 89
14 17 75
89 | ន្តង្គង្គង្គន | | | 6
7
8
9 | 333
353
372
386
397 | 337
360
378
392
404 | 331
349
363 | 329
350
367
381
392 | 324
340
353 | 357
366 | 277
289
297
301 | 366
378 | 308
328
347
361
372 | 310
333
352
365
377 | 298
319
338
354
365 | | 296
319
335
351
361 | 269
289
304
319
330 | 318
342
363 | 309
331 | 229
256
282 | 301
322 | 338
367
390
406
418 | 246
267
287
305
319 | | į . | 11
12
13
14 | 406
412
417
420 | 424 | 391
395 | 407
412 | | 380
385 | 307
308
309
309 | 400 | 382
389
394
400 | 386
394
398
497 | 389 | | 372
378
384
392 | 340
348
370
370 | 398
405 | 383 | 334 | 378
385 | 427
433
438
441 | 330
342
354
366 | | 3 | 012345 | 71
104
151
204
244
277 | 71
94
147
207
250
281 | 224 | 72
104
160
210
248
279 | 143
188 | 71
102
153
202
238
265 | 205 | 240 | 140
185
221 | 74
106
150
196
230
262 | 137
181
215 | 144
183
214 | 144
184
216 | 74
99
141
179
189
20 | 74
79
91
124
158
193 | 162 | 75
76
82
100
125
153 | 158
192 | 72
83
125
183
237
279 | 72
80
110
148
180
207 | | | 6
7
8
9
10 | 304
324
341
354
364 | 308
328
344
358
370 | 318
332 | 304
324
340
354
367 | 280
299
317
330
338 | 321
335 | 263
278
285 | 295
315
332
345
357 | 297 | 323
337 | 289
307
320 | 275
288
301 | 287
303 | 259
274
287 | 258
288
313 | 263
287
308 | 181
208
231
250
273 | 272
293
309 | 315
342
363
379
391 | 251 | | | 11
12
13
14 | 373
377
377
377
377 | 377
381
382
384 | | 381 | 343
346
347
350 | 359 | | 371
371 | 列3
351
351
351 | 361 | 列2
351
350
351 | 318
318 | 344
343 | 310
318
318
317 | 375 | 351
359 | 289
304
317
326 | | 399
405
406
407 | 314
326
329
330 | | 4 | 012345 | 72
105
153
200
236
265 | | 73
99
142
186
220
248 | 72
101
159
204
240
267 | 143
187
221 | | 69
95
137
180
213
234 | 69
149
149
149
149
149 | 132
169
201 | 183 | 71
99
132
168
198
225 | | 72
102
143
178
205
231 | 70
98
138
167
189
210 | 72
78
78
78
765
765
201 | 73
77
89
121
159
196 | 99
125 | 152 | 72
82
127
182
233
275 | 69
78
109
148
179
206 | | | 9 | 310
324
339
347 | 315
328
341
351 | 292
306
321
330 | 310
324
337
347 | 294
310
324
334 | 270
287
303
316
328 | 276
288
300
305 | 287
302
315
327 | 272
288
301
313 | 283
298
312
324 | 266
283
296
309 | | 285
297 | 227
244
259
272
282 | 262
283
303 | 257
282
302 | 207
231
251 | 256
276
291 | 353
365 | 247
266 | | | 11
12
13
14 | [368] | <i>137</i> 4 | 352 | 1373 | 352 | 341
352
357
363 | 3131 | 356 | 339 | 348 | 336 | | 321
330 | 291,
296
311,
322 | 337
347 | 341
347 | 302
308 | 322
334 | 391.
395 | 313
324 | Figure 1.- Dimensions of multiweb wing models MW-2 and MW-3. (a) Chordwise section 10 inches from tip. (b) Plan view. Figure 2.- Location of instrumentation for models MW-2 and MW-3. (Where two wire strain gages are listed, even-numbered gage is on far skin. Strain gages 16, 19, 20, and 23 are along web center line. The strain gages 11 inches from the tip are alined in the chordwise direction on model MW-2 and in the spanwise direction on model MW-3.) L-77511 Figure 3.- Model in place at nozzle exit prior to test. (Stagnation-temperature probes can be seen behind model.) Figure 4.- Stagnation pressures. Figure 5.- Stagnation temperatures. Figure 6.- Typical model temperatures. Figure 6.- Concluded. Figure 7.- Comparison of measured and calculated skin temperatures. Figure 7.- Concluded. (a) Leading- or trailing-edge section. (b) Skin and web combination. Figure 8.- Subdivision of wing cross section for temperature-distribution calculations. Figure 9.- Temperature distribution of entire cross section of model MW-2. Figure 10.- Temperature distribution of entire cross section of model MW-3, run 2. Figure 11.- Comparison of measured and calculated model temperatures. (a) t = 11.4 seconds. (b) t = 11.5 seconds. L**-**89311 Figure 12.- Progressive failure of model MW-2. (c) t = 12.3 seconds. (d) t = 12.3 seconds. L-89312 Figure 12.- Continued. (e) t = 12.4 seconds. (f) t = 13.0 seconds. L-89313 Figure 12.- Concluded. Figure 13.- Model MW-2 after test. I-77204 Figure 14.- Model MW-3 after failure.